25个小学奥数必考公式

小学资料   2024-11-24 16:15   499   0  

25个小学奥数必考公式

1、和差倍问题:

每份数x份数=总数

总数÷每份数=份数

总数÷份数=每份数

倍数x倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

  1. 年龄问题的三个基本特征:

①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的;

3、归一问题的基本特点:

问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:

根据题目中的条件确定并求出单一量;

4、植树问题:


基本类型

在直线或者不封闭的曲线上植树,两端都植树

在直线或者不封闭的曲线上植树,两端都不植树

在直线或者不封闭的曲线上植树,只有一端植树

封闭曲线上植树

基本公式

棵数=段数+ 1

棵距x段数=总长

棵数=段数 - 1

棵距x段数=总长

棵数=段数

棵距x段数=总长

关键问题

确定所属类型,从而确定棵数与段数的关系



  1. 鸡兔同笼问题基本概念:

鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样) :

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数*总头数-总脚数)÷(兔脚数-鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数*总头数)÷(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

  1. 盈亏问题;基本概念:

一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:

先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:

①一次有余数,另一次不足;

基本公式:总份数=(余数+不足数)÷两次每份数的差

②当两次都有余数;

基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

③当两次都不足

基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差

基本特点:

对象总量和总的组数是不变的。

关键问题:

确定对象总量和总的组数。

  1. 牛吃草问题:基本思路:

假设每头牛吃草的速度为“1”份,根据两次不同的吃法求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:

原草量和新草生长速度是不变的;

关键问题:

确定两个不变的量。

基本公式:

生长量=(较长时间x长时间牛头数-较短时间x短时间牛头数)÷(长时间-短时间);

总草量=较长时间x长时间牛头数-较长时间x生长量;

8、周期循环与数表规律:

周期现象:

事物在运动变化的过程中,某些特征有规律循环出现。

周期:

我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366天;

①年份能被4整除;

②如果年份能被100整除,则年份必须能被400整除;

平年:一年有365天。

①年份不能被4整除;

②如果年份能被100整除,但不能被400整除;

9、平均数:

基本公式:

①平均数=总数量÷总份数

总数量=平均数x总份数

总份数=总数量÷平均数

②平均数=基准数+每一个数与基准数差的和÷总份数

基本算法:

①求出总数量以及总份数,利用基本公式①进行计算。

②基准数法:根据给出的数之间的关系,确定一个基准数;

一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②

10、抽屉原理:

抽屉原则一:

如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:

①4=4+0+0  ②4=3+1+0  ③4=2+2+0  ④4=2+1+1

观察上面四种放物体的方式,我们会发现一个共同特点:

总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:

如果把n个物体放在m个抽屉里,其中n>m,那么必有个抽屉至少有:

①k=[n/m]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:

[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2

关键问题:

构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

11、定义新运算

基本概念:

定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:

严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程,规律进行运算。

关键问题:

正确理解定义的运算符号的意义。

注意事项:

①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

12、数列求和

等差数列:

在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:

首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数一般用n表示:

公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表示.

基本思路:

等差数列中涉及五个量:a1,an,d,n,sn通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:

通项公式:an=a1+(n-1)d;

通项=首项+(项数一1)x公差;

数列和公式:sn=(a1+an)xn÷2:

数列和=(首项+末项)x项数÷2;

项数公式:n=(an+a1)÷d+1:

项数=(末项-首项)÷公差+1:

公差公式:d=(an-a1))÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:

确定已知量和未知量,确定使用的公式;

13、二进制及其应用:

十进制:

用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2x102+3x10+4

=Anx10n-1+An-1x10n-2+An-2x10n-3+An-3x10n-4+An-4x10n-5+An-6x10n-7+……..+A3x102+A2x101+A1x100

注意:NO=1;N1=N(其中N是任意自然数)

二进制:

用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

(2)=Anx2n-1+An-1x2n-2+An-2x2n-3+An-3x2n-4+An-4x2n-5+An-6x2n-7+……+A3x22+A2x21+A1x20

注意:An不是0就是1

十进制化成二进制:

①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0按照二进制展开式特点即可写出。

14、加法乘法原理和几何计数:

加法原理:

如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2.......+mn种不同的方法。

关键问题:

确定工作的分类方法。

基本特征:

每一种方法都可完成任务。

乘法原理:

如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1xm2.....xmn种不同的方法。

关键问题:

确定工作的完成步骤。

基本特征:

每一步只能完成任务的一部分。

直线:

点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:

没有端点,没有长度。

线段 :

直线上任意两点间的距离。这两点叫端点。

线段特点:

有两个端点,有长度。

射线:

把直线的一端无限延长。

射线特点:

只有一个端点;没有长度。

1数线段规律:总数=1+2+3+...+(点数一1);

②数角规律=1+2+3+..+(射线数一1);

③数长方形规律:个数=长的线段数x宽的线段数:

④数长方形规律:个数=1x1+2x2+3x3+...+行数x列数

15、质数与合数:

质数:

个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:

一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:

如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:

把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:

N=,其中a1、a2、a3、……an都是合数N的质因数,且a1<a2<a3<……<an。

求约数个数的公式:

P=(r1+1)x(r2+1)x(r3+1)x……x(rn+1)

互质数:

如果两个数的最大公约数是1,这两个数叫做互质数。

16、约数与倍数:

约数和倍数:

若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:

几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:

1、几个数都除以它们的最大公约数,所得的几个商是互质数。

2、几个数的最大公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的最大公约数的约数

4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有12、346、12;18的约数有:1、2、369、18;

那么12和18的公约数有:1、2、3、6;

那么12和18最大的公约数是:6,记作(1218)=6

求最大公约数基本方法:

1分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:

几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48......

18的倍数有:18、36、54、72......

那么12和18的公倍数有:36、72、108....

那么12和18最小的公倍数是36,记作[12 18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1短除法求最小公倍数;2分解质因数的方法

17、数的整除:

基本概念和符号:

1、整除:如果一个整数a,除以一个自然数b,得到

个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”

整除判断方法:

1.能被 2、5整除:末位上的数字能被2、5整除。

2.能被 4、25整除:末两位的数字所组成的数能被4、25整除。

3.能被 8、125整除:末三位的数字所组成的数能被8、125整除。

4.能被3、9整除:各个数位上数字的和能被3、9整除

5.能被 7整除:

①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6.能被 11 整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7.能被 13 整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

整除的性质

1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

4.如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

18、余数及其应用:

基本概念:

对任意自然数a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余数,q叫做a除以b的不完全商。

余数的性质:

①余数小于除数。

②若a、b除以c的余数相同,则ca-b或cb-a。

③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。

④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。

19、余数、同余与周期:

同余的定义:

①若两个整数a、b除以m的余数相同,则称a b对于模m同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。

同余的性质:

①自身性:a≡a(mod m);

②对称性:若a≡b(mod m),则b≡a(mod m);

③传递性若a≡b(mod m)b≡c(mod m)则a≡c(mod m) ;

④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);

⑤相乘性:若a≡b(mod m)c≡d(mod m),则axc≡b xd(mod m);

⑥乘方性:若a≡b(mod m),则an≡bn(mod m);

⑦同倍性:若a≡b(mod m)整数c则axc≡bxc(mod mxc);

关于乘方的预备知识:

1若A=axb,则MA=Maxb=(Ma)b

②若B=c+d则MB=Mc+d=McxMd

被3、9、11除后的余数特征:

1一个自然数M,n表示M的各个数位上数字的和,则 M≡n(mod9)或(mod3);

②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和则M≡Y-X或M≡11-(X-Y)(mod 11);

费尔马小定理:

如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。

20、分数与百分数的应用:

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同条件下的分率。常见的处理方法是确定不同的标准为倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

21、分数大小的比较

基本方法:

①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。

②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。

③基准数法:确定一个标准,使所有的分数都和它进行比较。

④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。

⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)

⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。

⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。

⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。

倒数比较法:利用倒数比较大小,然后确定原数的大小。基准数比较法:确定一个基准数,每一个数与基准数比较。

22、分数拆分

将一个分数单位分解成两个分数之和的公式:

23、完全平方数

完全平方数特征:

1.末位数字只能是:0、1、4、5、6、9;反之不成立。

2.除以3余0或余1;反之不成立。

3.除以4余0或余1;反之不成立

4.约数个数为奇数;反之成立。

5.奇数的平方的十位数字为偶数;反之不成立。

6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。

7.两个相临整数的平方之间不可能再有平方数。

平方差公式:

X2-Y2=(X-Y)(X+Y)

完全平方和公式:

(X+Y)2=X2+2XY+Y2

完全平方差公式:

(X-Y)2=X2-2XY+Y2

24、比和比例:

比:

两个数相除又叫两个数的比。比号前面的数叫比的前项比号后面的数叫比的后项。

比值:

比的前项除以后项的商,叫做比值。

比的性质:

比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

比例:

表示两个比相等的式子叫做比例。a:b=c:d或

比例的性质:

两个外项积等于两个内项积(交叉相乘),ad=bc。

正比例:

若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。

反比例:

若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。

比例尺:

图上距离与实际距离的比叫做比例尺。

按比例分配:

把几个数按一定比例分成几份,叫按比例分配。

25、综合行程:

基本概念:

行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系

基本公式:

路程=速度x时间;路程÷时间=速度;路程÷速度=时间

关键问题:

确定运动过程中的位置和方向。

相遇问题:速度和x相遇时间=相遇路程(请写出其他公式)

追及问题:追及时间=路程差÷速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)x顺水时间

逆水行程=(船速-水速)x逆水时间顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法

基本题型:

已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

博客评论
还没有人评论,赶紧抢个沙发~
发表评论
说明:请文明发言,共建和谐网络,您的个人信息不会被公开显示。